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Abstract

Integral and supremum estimates are proven for local solutions of de-
generate and singular quasilinear parabolic equations. This is done with
the aid of a local energy inequality and estimates in Lweak

q spaces.

1 Introduction and Results

In this paper we shall obtain Lq,loc(ΩT ) and L∞,loc(ΩT ) estimates for local
solutions to a class of quasilinear degenerate or singular parabolic equations
modeled after

ut − div
(
|∇u|p−2∇u

)
= f(x, t) + div g; (p > 1). (1)

If p > 2 the problem is degenerate, while if p < 2 the problem is singular.
Indeed, let Ω ⊆ RN be a domain, let T > 0, and let ΩT = Ω × (0, T ).

Consider a general quasilinear equation of the form

ut − div a(x, t, u,∇u) = b(x, t, u,∇u) (2)

where for almost every (x, t, u,v) ∈ Ω× [0, T ]×R×RN the following structure
conditions hold:

(H1) 1 < p ≤ δ < p
(

N+2
N

)
, ci ≥ 0 for 0 ≤ i ≤ 5, c0 > 0, and φj ≥ 0 for

0 ≤ j ≤ 2,

(H2) a(x, t, u,v)·v ≥ co|v|p − c3|u|δ − φo(x, t),

(H3) |a(x, t, u,v)| ≤ c1|v|p−1 + c4|u|δ(1−
1
p ) + φ1(x, t),

(H4) |b(x, t, u,v)| ≤ c2|v|p(1− 1
δ ) + c5|u|δ−1 + φ2(x, t),

AMS Classifications: 35K65, 35B45
Mike O’Leary, Department of Mathematics, Towson University, Towson, MD 21252
moleary@towson.edu
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(H5) φ1 ∈ L p
p−1 ,loc(ΩT ),

(H6) φo ∈ Lµ,loc(ΩT ) with µ > 1, and φ1, φ2 ∈ Ls,loc(ΩT ) with s > (N+2)p
(N+2)p−N ,

(H7) u ∈ Lr,loc(ΩT ) for some r ≥ 1 for which N(p− 2) + rp > 0. In particular
if p > 2N/(N + 2) we may set r = 2.

We shall then prove

Theorem 1 Let u ∈ L∞,loc(0, T ;L2,loc(Ω))∩Lp,loc(0, T ;W 1
p,loc(Ω)) satisfy (??)

in the sense of distributions, and suppose that the structure conditions (H1)-(H7)
are satisfied.

If both s > (N + p)/p and µ > (N + p)/p then u ∈ L∞,loc(ΩT );
if both s = (N +p)/p and µ = (N +p)/p, then u ∈ Lq,loc(ΩT ) for all q <∞;
if both s < (N +p)/p and µ < (N +p)/p, then u ∈ Lq,loc(ΩT ) for all q < q∗,

where

q∗ = min

 p+ p
N − 1

1−
(
1− 1

s

) (
1 + p

N

) , p+ 2p
N

1−
(
1− 1

µ

) (
1 + p

N

)
 .

Regularity properties of solutions of these types of equations have been stud-
ied extensively over the past 15 years, first in an attempt to prove Hölder conti-
nuity of solutions, and later to study conditions which guarantee the bounded-
ness of solutions. Indeed in the degenerate case, Hölder continuity was proven
by DiBenedetto and Friedman [?, ?], and in the singular case by Y.Z. Chen and
DiBenedetto, [?, ?]. Local boundedness under suitable structure conditions was
proven by Porzio [?]; such results have been extended to equations with more
general structures by Andreucci [?] and Lieberman [?]. An excellent discussion
of known results is the book of DiBenedetto [?].

The results contained in this paper have the following new features. First, to
the best of this author’s knowledge, this is the only result which yields informa-
tion about the degree of local integrability of solutions which are not necessarily
bounded. Secondly, this result extends the class of equations for which the local
boundedness of solutions is guaranteed. Indeed, for the case p > 2N

N+2 , in [?,
Chp. 5, Thm 3.1] boundedness of solutions was proven only if

φ
p

p−1
1 , φ

δ
δ−1
2 ∈ Ls,loc(ΩT ) for s >

N + p

p
. (3)

In the case p ≤ 2N
N+2 , local boundedness was proven in [?, Chp. 5, Thm. 5.1]

only if the problem had homogeneous structure, meaning (H2), (H3) and (H4)
are replaced by the requirements a(x, t, u,v)·v ≥ co|v|p, |a(x, t, u,v)| ≤ c1|v|p−1

and b(x, t, u,v) = 0; moreover further global information was required, to the
effect that the solution could be approximated weakly in Lr,loc(ΩT ) by bounded
solutions. Only under these additional circumstances, now no longer necessary,
was boundedness proven.
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The results of Theorem ?? are almost optimal in the sense that they almost
agree with the results in the linear case. Indeed, consider the linear problem (so
p = 2)

ut −
∂

∂xi

{
aij(x, t)uxj

+ ai(x, t)u
}

+ bi(x, t)uxi
+ a(x, t)u = φ(x, t) +

∂φi

∂xi
(4)

for φ ∈ Ls,loc(ΩT ), φi ∈ Lµ,loc(ΩT ). Ladyzhenskaya, Solonnikov and Uraltseva
showed in [?, Chap. 3, Secs. 8,9] that local solutions of this problem are
locally bounded if s, µ > N+2

2 , that they are in Lq,loc(ΩT ) for all q < ∞ if
s = µ = N+2

2 , and that they are in Lq∗,loc(ΩT ) if s, µ < N+2
2 , where q∗ is the

number in Theorem ?? with p = 2.
A few comments about our assumptions are now in order. At first, the re-

quirement (H5) that φ1 ∈ L p
p−1 ,loc(ΩT ) may seem out of place; its purpose is

to guarantee that terms of the form a(x, t, u,∇u)·∇u are locally integrable. It
is natural in some sense as this same condition was imposed by Ladyzhenskaya,
Solonnikov and Uraltseva to obtain boundedness of solutions to quasilinear equa-
tions in the case p = 2; see [?, Chap. 5, Thm. 2.1, Eqn. 2.2].

The restrictions on s and µ in (H6) are exactly the conditions that guarantee
q∗ > N+2

N p; recall that Sobolev embedding will imply that any function which
satisfies the integrability hypotheses of Theorem ?? will be in LN+2

N p,loc(ΩT ).

2 Sketch of Proof

The proof of Theorem ?? is based upon the following result.

Proposition 2 (Local Energy Estimate) Suppose that u is a solution of
(??) in the sense of distributions, and that the assumptions of Theorem ?? hold.
Then for any QR(xo, to) = BR(xo) × (to − Rp, to) ⊂⊂ ΩT , for any 0 < σ < 1,
and for any k > 0, we have{∫∫

QσR

(u∓ k)(
N+2

N )p

± dx dt

} 1
1+p/N

≤ γ

(1− σ)pRp

∫∫
QR

(u∓ k)2± dx dt

+
γ

(1− σ)pRp

∫∫
QR

(u∓ k)p
± dx dt

+ γ

∫∫
QR

|u|δχ[(u∓ k)± > 0] dx dt

+ γ

( ||φ1||Ls(QR)

(1− σ)R
+ ||φ2||Ls(QR)

) (∫∫
QR

(u∓ k)
s

s−1
± dx dt

)1− 1
s

+ γ||φo||Lµ(QR) (meas[(u∓ k)± > 0])1−
1
µ .

(5)

where γ is a constant that depends only on ci, N, p, δ, s, and µ but is independent
of k and ||φ1||L p

p−1 ,loc(ΩT ).



4 M. O’Leary

This is a standard result following from the use of a smooth cutoff approx-
imation of (u ∓ k)± as a testing function; see for example [?, Chap. 5, Prop.
6.1]. For convenience we have included a sketch of the proof in §??.

Once the local energy estimate is known, the proof proceeds in two steps.
First observe that if u ∈ Lβ,loc(ΩT ) for some β, then the local energy inequality
can be used to obtain an estimate of the form

meas
{
(x, t) ∈ QσR : |u(x, t)| > k

}
≤ γ

(
||u||Lβ(QR)

) (
1
k

)α(β)

(6)

for some exponent α(β). This is sufficient to give us an estimate for |u|Lweak
α(β) (QσR).

Indeed, recall the definitions of the spaces Lweak
q (U); a measurable function

f is an element of Lweak
q (U) if and only if

|f |Lweak
q (U) ≡ sup

k>0
k
(
meas{x ∈ U : |f(x)| > k}

) 1
q <∞. (7)

The quantity |f |Lweak
q (U) is not a norm, but it is a quasinorm. The inequality

|f |Lweak
q (U) ≤ ||f ||Lq(U) (8)

follows immediately from

kq meas[|f | > k] ≤
∫
U
|f |q χ[|f | > k] dx ≤

∫
U
|f |q dx (9)

so that Lq(U) ⊂ Lweak
q (U). However Lweak

q (U) 6= Lq(U), as the function f(x) =
1/x satisfies f ∈ Lweak

1 (0, 1), but f /∈ L1(0, 1). Finally, if q′ < q and U is
bounded, then Lweak

q (U) ⊂ Lq′(U); indeed, [?, Theorem 1.13] implies

||f ||q
′

Lq′ (U) = q′
∫ ∞

0

kq′−1 meas[|f | > k] dk

≤ q′measU + q′|f |q
Lweak

q (U)

∫ ∞

1

kq′−q−1 dk <∞.

(10)

For further details about the spaces Lweak
q (U) see [?, Chp. 1] or [?, IX.4].

The energy inequality in the form (??) then tells us that if u ∈ Lβ,loc(ΩT ),
then u ∈ Lq,loc(ΩT ) for all q < α(β). Carefully calculating α(β) and iterating
this process, we shall prove

Proposition 3 Under the hypotheses of Theorem ??, the following is true.
If s, µ ≥ (N + p)/p, then u ∈ Lq,loc(ΩT ) for all q <∞ while
if s, µ < (N + p)/p, then u ∈ Lq,loc(ΩT ) for all q < q∗.

To prove the boundedness of solutions, we shall use the integrability guaran-
teed by Proposition ??, the energy estimates, and the usual DeGiorgi iteration
techniques, coupled with an interpolation in the case N+2

N p ≤ 2 and proceed in
what are now standard ways; c.f. [?, Chap. 5].
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3 The Lq,loc(ΩT ) estimates for q < ∞

The left side of (??) in Proposition ?? with the + choice is estimated as

∫∫
QσR

(u− k)(
N+2

N )p

+ dx dt ≥ k(
N+2

N )p measQσR
[u > 2k], (11)

thus

{
k(

N+2
N )p measQσR

[u > 2k]
} 1

1+p/N ≤ C

∫∫
QR

(u− k)2+ dx dt

+ C

∫∫
QR

(u− k)p
+ dx dt+ C

∫∫
QR

|u|δχ[u > k] dx dt

+ C

(∫∫
QR

(u− k)
s

s−1
+ dx dt

)1− 1
s

+ C (meas[u > k])1−
1
µ (12)

where C = C(σ,R, ci, N, p, δ, s, µ, ||φo||Lµ,loc(ΩT ), ||φ1, φ2||Ls,loc(ΩT )). We shall es-
timate |u|Lweak

q (QσR) by analyzing the right side of this equation.

Suppose that u ∈ Lβ,loc(ΩT ) for some β sufficiently large. Then, for any
exponent θ < β, note that

∫∫
QR

(u− k)θ
+ dx dt ≤

(∫∫
QR

(u− k)β
+ dx dt

) θ
β

(meas[u > k])1−
θ
β

≤ ||u||θLβ(QR)

(
1
kβ
|u|β

Lweak
β (QR)

)1− θ
β

≤ ||u||βLβ(QR)

(
1
k

)β−θ

.

(13)

Thus we can estimate

{
k(

N+2
N )p measQσR

[u > 2k]
} 1

1+p/N

≤ C||u||βLβ(QR)

{(
1
k

)β−2

+
(

1
k

)β−p

+
(

1
k

)β−δ
}

+ C||u||β(1− 1
s )

Lβ(QR)

(
1
k

)β(1− 1
s )−1

+ C||u||β(1− 1
µ )

Lβ(QR)

(
1
k

)β(1− 1
µ )
. (14)

Repeat the same process with (u + k)− replacing (u − k)+; we shall obtain a
constant C̃ = C̃(||u||Lβ(QR), σ, R, ci, N, p, δ, s, µ, ||φo||Lµ,loc(ΩT ), ||φ1, φ2||Ls,loc(ΩT ))
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but independent of k so that

measQσR
[|u| > k] ≤ C̃

{(
1
k

)(1+ p
N )β+(p−2)

+
(

1
k

)(1+ p
N )β+ p

N (2−p)

+
(

1
k

)(1+ p
N )β+ p

N (2−δ)+(p−δ)

+
(

1
k

)(1+ p
N )(1− 1

s )β+p+ p
N−1

+
(

1
k

)(1+ p
N )(1− 1

µ )β+p+ 2p
N

}
. (15)

Set

α(β) = min

{(
1 +

p

N

)
β + (p− 2),

(
1 +

p

N

)
β +

p

N
(2− p),

(
1 +

p

N

)
β +

p

N
(2− δ) + (p− δ),

(
1 +

p

N

) (
1− 1

s

)
β + p+

p

N
− 1,

(
1 +

p

N

) (
1− 1

µ

)
β + p+

2p
N

}
; (16)

we then have proven the following

Lemma 4 If u ∈ Lβ,loc(ΩT ), then u ∈ Lweak
α(β),loc(ΩT ) and u ∈ Lq,loc(ΩT ) for all

q < α(β).

With this in mind, we shall analyze the iterations βo, α(βo), α(α(β0)), . . .
where

βo = max
{

2,
N + 2
N

p, r

}
(17)

is chosen so that our hypotheses guarantee that u ∈ Lβo,loc(ΩT ). Lemma ?? will
then guarantee that u ∈ Lq,loc(ΩT ) for any q < (α ◦ α ◦ · · · ◦ α)(βo), regardless
of the number of compositions. To analyze the sequence of iterations, set

α1(β) =
(
1 +

p

N

)
β + (p− 2), (18)

α2(β) =
(
1 +

p

N

)
β +

p

N
(2− p), (19)

α3(β) =
(
1 +

p

N

)
β +

p

N
(2− δ) + (p− δ), (20)

α4(β) =
(
1 +

p

N

) (
1− 1

s

)
β + p+

p

N
− 1, (21)

α5(β) =
(
1 +

p

N

) (
1− 1

µ

)
+ p+

2p
N

; (22)

we shall analyze each in turn.
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Case 1: α1. Note that α1(β) > β if and only if

β >
N

p
(2− p) (23)

so that the sequence βo, α1(βo), α1(α1(βo)), . . . will tend to infinity if βo >
N
p (2−p). Indeed, the above shows that this sequence is monotone increasing; if
it tended to a finite limit, that limit would be a fixed point of α1 that was greater
than βo; since there are no such fixed points the sequence tends to infinity.

To see that βo >
N
p (2 − p), note that βo ≥ r and N(p − 2) + pr > 0 by

hypothesis (H7).
Case 2: α2. Now α2(β) > β if and only if

β > (p− 2). (24)

Clearly βo > p− 2, so the sequence βo, α2(βo), α2(α2(βo)), . . . tends to infinity
for the same reasons as before.

Case 3: α3. Now α3(β) > β if and only if

β > (δ − 2) +
N

p
(δ − p). (25)

Note that

(δ − 2) +
N

p
(δ − p) < δ − 2 +

N

p

[(
N + 2
N

)
p− p

]
< δ − 2 +N + 2−N

< δ ≤ βo

(26)

and thus the sequence βo, α3(βo), α3(α3(βo)), . . . tends to infinity.
Case 4: α4. Here the situation is somewhat different; since p + p

N − 1 >
p
N > 0, if

(
1 + p

N

) (
1− 1

s

)
≥ 1 we can immediately conclude that the sequence

βo, α4(βo), α4(α4(βo)), . . . tends to infinity. The condition
(
1 + p

N

) (
1− 1

s

)
≥ 1

is equivalent to the condition

s ≥ N + p

p
. (27)

Now suppose s < N+p
p . Then α4(β) > β if and only if

β <
p+ p

N − 1
1−

(
1− 1

s

) (
1 + p

N

) , (28)

while α4(β) < β if and only if

β >
p+ p

N − 1
1−

(
1− 1

s

) (
1 + p

N

) . (29)

Thus, if s < N+p
p , the sequence βo, α4(βo), α4(α4(βo)), . . . tends to

q∗s =
p+ p

N − 1
1−

(
1− 1

s

) (
1 + p

N

) . (30)
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Case 5: As in case 4, if µ ≥ (N + p)/p, we know immediately that the
sequence βo, α5(βo), α5(α5(βo)), . . . tends to infinity. If µ < (N + p)/p, then
α5(β) > β if and only if

β <
p+ 2p

N

1−
(
1− 1

µ

) (
1 + p

N

) (31)

and α5(β) < β if and only if the above inequality is reversed. Thus, if µ <
(N + p)/p, we know that the sequence βo, α5(βo), α5(α5(βo)), . . . tends to

q∗µ =
p+ 2p

N

1−
(
1− 1

µ

) (
1 + p

N

) . (32)

Summarizing, we have the following.

Lemma 5 The sequence βo, α(βo), α(α(βo)), α(α(α(βo))), . . . tends to infinity
if s, µ ≥ N+p

p and it tends to q∗ if s, µ < N+p
p .

Proposition ?? then follows immediately.

4 The L∞,loc(ΩT ) estimates

In this section, we shall show the boundedness of solutions if s > N+p
p and

µ > N+p
p . Proposition ?? implies that, for any 0 < σ̃ < 1, for any k̃, and for

any QR ⊂⊂ ΩT ,

(∫∫
Qσ̃R

(u− k̃)(
N+2

N )p

+ dx dt

) 1
1+p/N

≤ γ

(1− σ̃)pRp

∫∫
QR

(u− k̃)2+ dx dt

+
γ

(1− σ̃)pRp

∫∫
QR

(u− k̃)p
+ dx dt+ γ

∫∫
QR

|u|δχ[u > k̃] dx dt

+ γ

(
1 +

1
(1− σ̃)R

) (∫∫
QR

(u− k̃)
s

s−1
+ dx dt

)1− 1
s

+ γ
(
measQR

[u > k̃]
)1− 1

µ

. (33)

Fix ρ > 0, σ > 0, and let Qρ ⊂⊂ ΩT . For each integer n, set

ρn = σρ+
(1− σ)

2n
ρ, (34)

and let Qn = Qρn so that Q0 = Qρ and Q∞ = Qσρ. Let k > 0 be chosen later,
and set

kn = k

(
1− 1

2n+1

)
. (35)
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We wish to apply (??) above with k̃ = kn+1, QR = Qn, and Qσ̃R = Qn+1. To
do so, note that in this instance

(1− σ̃)R =
(

1− σ

2n+1

)
ρ. (36)

Substituting this above yields(∫∫
Qn+1

(u− kn+1)m
+ dx dt

) 1
1+p/N

≤ γ2np

(1− σ)pρp

∫∫
Qn

(u− kn+1)2+ dx dt

+
γ2np

(1− σ)pρp

∫∫
Qn

(u− kn+1)
p
+ dx dt

+ γ

∫∫
Qn

|u|δχ[u > kn+1] dx dt

+
γ2n

(1− σ)ρ

(∫∫
Qn

(u− kn+1)
s

s−1
+ dx dt

)1− 1
s

+ γ (measAn+1)
1− 1

µ

(37)

where m = N+2
N p and

An+1 = {(x, t) ∈ Qn : u(x, t) > kn+1} . (38)

Note that for every θ > 1,∫∫
Qn

(u− kn)θ
+ dx dt ≥

∫∫
Qn

(u− kn)θ
+χ[u > kn+1] dx dt

≥ (kn+1 − kn)θ measAn+1

≥
(

k

2n+2

)θ

measAn+1

(39)

so that

measAn+1 ≤
(

2n+2

k

)θ ∫∫
Qn

(u− kn)θ
+ dx dt. (40)

To obtain our boundedness results, we shall use (??) and (??) to develop an
iterative inequality, however the choice of what to estimate shall depend upon
the parameters of the problem.

4.1 Case 1: N+2
N

p > 2

We shall obtain an iterative inequality for

Yn =
∫∫

Qn

(u− kn)m
+ dx dt =

1
measQn

∫∫
Qn

(u− kn)m
+ dx dt. (41)
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We begin by estimating the first term on the right side of (??) with the aid of
(??) as

γ2np

(1− σ)pρp

∫∫
Qn

(u− kn+1)2+ dx dt

≤ γ2np

(1− σ)pρp

(∫∫
Qn

(u− kn+1)m
+ dx dt

) 2
m

{measAn+1}1−
2
m

≤ γ2np

(1− σ)pρp

(
2n+2

k

)m−2 ∫∫
Qn

(u− kn)m
+ dx dt

≤ γ

(1− σ)pkm−2
ρN2(p+m−2)nYn

(42)

where we have used the fact that m = N+2
N p > 2. Similarly

γ2np

(1− σ)pρp

∫∫
Qn

(u− kn+1)
p
+ dx dt ≤ γ

(1− σ)pkm−p
ρN2mnYn. (43)

To estimate the third term on the right of (??), first note that if C > B, then

sup
y>C

y

y −B
=

C

C −B
(44)

so that for each (x, t) ∈ [u > kn+1] we have

u

u− kn
≤ kn+1

kn+1 − kn
. (45)

Thus, for each θ,
|u|θχ[u > kn+1] ≤ 2(n+2)θ(u− kn)θ

+. (46)

Consequently, since δ < m

γ

∫∫
Qn

|u|δχ[u > kn+1] dx dt ≤
γ

km−δ
ρN+p2mnYn. (47)

To estimate the next term in a similar fashion, we need to know s
s−1 ≤ m;

however this is a simple consequence of the fact that s ≥ N+p
p and the definition

of m. As this requirement is satisfied, we proceed as follows:

γ2n

(1− σ)ρ

(∫∫
Qn

(u− kn+1)
s

s−1
+

)1− 1
s

≤ γ2n

(1− σ)ρ

(∫∫
Qn

(u− kn+1)m
+ dx dt

) 1
m

{measAn+1}1−
1
s−

1
m

≤ γ2n

(1− σ)ρ

(
2n+2

k

)m(1− 1
s )−1 (∫∫

Qn

(u− kn)m
+

)1− 1
s

≤ γ

(1− σ)km(1− 1
s )−1

ρ(N+p)(1− 1
s )−12[m(1− 1

s )−1]nY 1− 1
s

n .

(48)
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Lastly,

γ (measAn+1)
1− 1

µ ≤ γ

(
2nm

km
ρN+pYn

)1− 1
µ

≤ γ

km(1− 1
µ )
ρ(N+p)(1− 1

µ )2m(1− 1
µ )nY

1− 1
µ

n

(49)

Thus

ρN+pYn+1 ≤
γρN+p2(p+m−2)(1+ p

N )n

(1− σ)p+Nk(m−2)(1+ p
N )
Y

1+ p
N

n

+
γρN+p2(p+m)(1+ p

N )n

(1− σ)p+Nk(m−p)(1+ p
N )
Y

1+ p
N

n

+
γρ(N+p)(1+ p

N )2m(1+ p
N )n

k(m−δ)(1+ p
N )

Y
1+ p

N
n

+
γρ[(N+p)(1− 1

s )−1](1+ p
N )2[m(1− 1

s )−1](1+ p
N )n

(1− σ)1+
p
N k[m(1− 1

s )−1](1+ p
N )

Y
(1− 1

s )(1+ p
N )

n

+
γρ(N+p)(1− 1

µ )(1+ p
N )2m(1− 1

µ )(1+ p
N )n

km(1− 1
µ )(1+ p

N )
Y

(1− 1
µ )(1+ p

N )
n .

(50)

Now note that

m

(
1− 1

s

)
− 1 > 0 (51)

so that if we require k ≥ 1, 0 < σ < σo < 1, and fix ρ, we obtain constants γ̃ =
γ̃(σo, ρ, ci, N, p, δ, s, µ.||φo||Lµ,loc(ΩT ), ||φ1, φ2||Ls,loc(ΩT )) and B = B(N, p, δ, s, µ)
so that

Yn+1 ≤ γ̃BnY
1+ p

N
n + γ̃BnY

(1− 1
s )(1+ p

N )
n + γ̃BnY

(1− 1
µ )(1+ p

N )
n . (52)

Now if s > N+p
p , then(

1− 1
s

) (
1 +

N

p

)
>

(
N

N + p

) (
N + p

N

)
= 1, (53)

while similarly the assumption µ > N+p
p implies(

1− 1
µ

) (
1 +

p

N

)
> 1, (54)

hence by the usual rules on fast geometric convergence, Yn → 0 if Yo is suffi-
ciently small. However,

Yo =
∫∫

Qρ

(
u− k

2

)m

+

dx dt (55)
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so if k = k(ρ, σo, ci, N, p, δ, s, µ, ||φo||Lµ,loc(ΩT ), ||φ1, φ2||Ls,loc(ΩT )) is sufficiently
large, we may guarantee that Yn → 0; consequently

Y∞ =
∫∫

Qσρ

(u− k)m
+ dx dt = 0 (56)

so that u is bounded above. Similar considerations for (u+ k)− show that u is
bounded below.

4.2 Case 2: N+2
N

p ≤ 2

Let λ > max
{

2, p,m, s
s−1

}
be chosen later and set

Yn =
∫∫

Qn

(u− kn)λ
+ dx dt; (57)

this is well defined thanks to Proposition ??. Now for any finite Λ > λ > m, we
can apply the usual convexity inequality to obtain

Yn+1 =
∫∫

Qn+1
(u− kn+1)λ

+ dx dt

≤ 1
measQn+1

(∫∫
Qn+1

(u− kn+1)Λ+ dx dt

) λ
Λ θ

×
(∫∫

Qn+1
(u− kn+1)m

+ dx dt

) λ
m (1−θ)

(58)

where

θ =
1
m − 1

λ
1
m − 1

Λ

=
Λ
λ

λ−m

Λ−m
. (59)

Thus

Yn+1 ≤
1

measQn+1
||u||

λ−m
Λ−m Λ

LΛ(Qρ)

(∫∫
Qn+1

(u− kn+1)m
+ dx dt

) Λ−λ
Λ−m

(60)

and hence∫∫
Qn+1

(u− kn+1)m
+ dx dt ≥ [measQn+1]

Λ−m
Λ−λ

1

||u||
λ−m
Λ−λ Λ

LΛ(Qρ)

Y
Λ−m
Λ−λ

n+1 (61)
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which estimates the left side of (??). The right side of this equation is estimated
in the same fashion as case 1, indeed

γ2np

(1− σ)pρp

∫∫
Qn

(u− kn+1)2+ dx dt ≤ γρN2(p+λ−2)n

(1− σ)pkλ−2
Yn, (62)

γ2np

(1− σ)pρp

∫∫
Qn

(u− kn+1)
p
+ dx dt ≤ γρN2λn

(1− σ)pkλ−p
Yn, (63)

γ

∫∫
Qn

|u|δχ[u > kn+1] dx dt ≤
γρN+p2λn

kλ−δ
Yn, (64)

γ2n

(1− σ)ρ

[∫∫
Qn

(u− kn+1)
s

s−1
+ dx dt

]1− 1
s

≤ γρ(N+p)(1− 1
s )2[λ(1− 1

s )−1]n

(1− σ)kλ(1− 1
s )−1

Y
1− 1

s
n ,

(65)

γ (measAn+1)
1− 1

µ ≤ γρ(N+p)(1− 1
µ )2λ(1− 1

µ )n

kλ(1− 1
µ )

Y
1− 1

µ
n . (66)

Thus

ρ(N+p)(Λ−m
Λ−λ )Yn+1 ≤ ||u||

λ−m
Λ−m Λ

LΛ(Qρ)

{
γρN+p2(p+λ−2)(1+ p

N )

(1− σ)p+Nk(λ−2)(1+ p
N )
Y

1+ p
N

n

+
γρN+p2(p+λ)(1+ p

N )n

(1− σ)p+Nk(λ−p)(1+ p
N )
Y

1+ p
N

n +
γρ(N+p)(1+ p

N )2λ(1+ p
N )n

k(λ−δ)(1+ p
N )

Y
1+ p

N
n

+
γρ[(N+p)(1− 1

s )−1](1+ p
N )2[λ(1− 1

s )−1](1+ p
N )n

(1− σ)1+
p
N k[λ(1−

1
s )−1](1+ p

N )
Y

(1− 1
s )(1+ p

N )
n

+
γρ(N+p)(1− 1

µ )(1+ p
N )2λ(1− 1

µ )(1+ p
N )n

kλ(1− 1
µ )(1+ p

N )
Y

(1− 1
µ )(1+ p

N )
n

} Λ−λ
Λ−m

. (67)

Let λ be so large that λ
(
1− 1

s

)
− 1 > 0. Working as we did before, if we fix ρ

and require k ≥ 1 and 0 < σ < σo < 1, then we will obtain a pair of constants
γ̃ = γ̃(Λ, λ, ||u||LΛ(Qρ), σo, ρ, ci, N, p, δ, s, µ, ||φo||Lµ,loc(ΩT ), ||φ1, φ2||Ls,loc(ΩT )) and
B = B(Λ, λ,N, p, δ, s, µ) so that

Yn+1 ≤ γ̃BnY
(1+ p

N )( Λ−λ
Λ−m )

n + γ̃BnY
(1+ p

N )(1− 1
s )( Λ−λ

Λ−m )
n

+ γ̃BnY
(1+ p

N )(1− 1
µ )( Λ−λ

Λ−m )
n . (68)

Now since s, µ > N+p
p , we know

(
1 + p

N

) (
1− 1

s

)
> 1 and

(
1 + p

N

) (
1− 1

µ

)
> 1.

Further, since

lim
Λ→∞

Λ− λ

Λ−m
= 1 (69)
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we can choose Λ = Λ(λ,m, s, p,N) so that both(
1 +

p

N

) (
1− 1

s

) (
Λ− λ

Λ−m

)
> 1 (70)

and (
1 +

p

N

) (
1− 1

µ

) (
Λ− λ

Λ−m

)
> 1. (71)

The usual rules on fast geometric convergence then allow us to proceed as we
did in case 1, and find u ∈ L∞,loc(ΩT ) as required.

5 Proof of Proposition ??

Let (xo, to) ∈ ΩT ; modulo a translation we shall assume (xo, to) = (0, 0). Set
QR = BR × (−Rp, 0), and suppose that QR ⊂⊂ ΩT . Let −Rp ≤ τ ≤ 0 and
set Qτ

R = BR × (−Rp, τ). Let 0 < σ < 1 be fixed. Let ζ ∈ C∞(QR) be a
cutoff function so that 0 ≤ ζ ≤ 1, with ζ(x, t) = 1 for (x, t) ∈ QσR, so that
ζ(x, t) = 0 near |x| = R or t = −Rp, and so that |∇ζ|p + |ζt| ≤ 2/(1 − σ)pRp.
Let ζj ∈ C∞0 (Qτ

R) be a sequence of cutoff functions that tend to ζ, so that
ζj(x, t) = 0 if t ≥ τ − 1/j and ζj(x, t) = ζ(x, t) if t ≤ τ − 2/j. Let Jη be
a symmetric mollifying kernel in space and time, and denote the space-time
convolution Jη ∗ f by fη.

Fix η > 0, and k > 0, and consider the function

ψ(x, t) =
{
(uη − k)+ζ

p
j

}
η
. (72)

If η is sufficiently small then ψ ∈ D(ΩT ), thus∫∫
ΩT

−u ∂
∂t

{
(uη − k)+ζ

p
j

}
η
dx dt

+
∫∫

ΩT

ai(x, t, u,∇u) ∂

∂xi

{
(uη − k)+ζ

p
j

}
η
dx dt

=
∫∫

ΩT

b(x, t, u,∇u)
{
(uη − k)+ζ

p
j

}
η
dx dt

I1 + I2 = I3.

(73)

We shall investigate each term seperately.
Since the mollifier is symmetric,

I1 = −
∫∫

ΩT

uη
∂

∂t

{
(uη − k)+ζ

p
j

}
dx dt

=
1
2

∫∫
ΩT

{
∂

∂t
(uη − k)2+

}
ζp
j dx dt−

p

2

∫∫
ΩT

(uη − k)2+ζ
p−1
j

∂ζj
∂t

dx dt.

(74)
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Send j →∞ and integrate by parts to obtain

lim
j→∞

I1 =
1
2

∫
BR

(uη − k)2+ζ
p
∣∣∣
τ
dx− p

2

∫∫
Qτ

R

(uη − k)2+ζ
p−1ζt dx dt (75)

and since u ∈ Cloc(0, T ;L2,loc(Ω)), we have

lim
η↓0

lim
j→∞

I1 =
1
2

∫
BR

(u− k)2+ζ
p
∣∣∣
τ
dx− p

2

∫∫
Qτ

R

(u− k)2+ζ
p−1ζt dx dt. (76)

As for I2, we have

I2 =
∫∫

ΩT

ai
η(x, t, u,∇u) ∂

∂xi

{
(uη − k)+ζ

p
j

}
dx dt. (77)

The integrability of u and the structure conditions (H3) and (H5) guarantee
that ai(x, t, u,∇u) ∈ L p

p−1 ,loc(ΩT ), thus we can send j →∞ and η ↓ 0 to obtain

lim
η↓0

lim
j→∞

I2 =
∫∫

Qτ
R

ai(x, t, u,∇(u− k)+)
{

∂

∂xi
(u− k)+

}
ζp dx dt

+ p

∫∫
Qτ

R

ai(x, t, u,∇(u− k)+)(u− k)+ζp−1ζxi
dx dt. (78)

Applying (H2), (H3) and Young’s inequality, we obtain

lim
η↓0

lim
j→∞

I2 ≥γ
∫∫

Qτ
R

|∇(u− k)+|pζp dx dt− γ

∫∫
Qτ

R

|u|δχ[u > k]ζp dx dt

− γ

∫∫
Qτ

R

(u− k)p
+|∇ζ|p dx dt−

∫∫
Qτ

R

φoχ[u > k]ζp dx dt

−
∫∫

Qτ
R

φ1(u− k)+ζp−1|∇ζ| dx dt.

(79)

Lastly, we turn to I3,

I3 =
∫∫

ΩT

bη(x, t, u,∇u)(uη − k)+ζp dx dt. (80)

The integrability of u and the structure conditions (H4) and (H6) guarantee
that b(x, t, u,∇u) ∈ L m

m−1 ,loc(ΩT ), where m = N+2
N p; since Sobolev embedding

imples u ∈ Lm,loc(ΩT ) we can send j →∞ and η ↓ 0 to obtain

lim
η↓0

lim
j→∞

I3 =
∫∫

Qτ
R

b(x, t, u,∇u)(u− k)+ζp dx dt, (81)

so by (H4)

lim
η↓0

lim
j→∞

I3 ≤ c2

∫∫
Qτ

R

|∇(u− k)+|p(1−
1
δ )(u− k)+ζp dx dt

+ c5

∫∫
Qτ

R

|u|δχ[u > k]ζp dx dt+
∫∫

Qτ
R

φ2(u− k)+ζp dx dt. (82)
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If we put together our estimates for I1, I2, and I3, together with Young’s
inequality, we obtain

ess sup
−Rp<τ<0

∫
BR

|(u− k)+ζκ|2
∣∣∣
τ
dx+

∫∫
QR

|∇(u− k)+ζκ|p dx dt

≤ γ

(1− σ)pRp

∫∫
QR

{
(u− k)2+ + (u− k)p

+

}
dx dt

+ γ

∫∫
QR

|u|δχ[u > k] dx dt+ γ

∫∫
QR

φoχ[u > k] dx dt

+
γ

(1− σ)R

∫∫
QR

φ1(u− k)+ dx dt+ γ

∫∫
QR

φ2(u− k)+ dx dt

(83)

where κ = max{1, p/2}. The Sobolev embedding theorem then yields the result;
at least for (u− k)+. The case for (u+ k)− is handled similarly.
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